Aluminum-Phosphorus Compounds with Low Coordination Numbers: Structures, Energies, and Vibrational Frequencies of the $\mathrm{AlPH}_{2}, \mathrm{AlPH}_{3}$, and AlPH_{4} Isomers and the $\mathbf{H}_{3} \mathrm{Al}-\mathbf{P H}_{3}$ Adduct

Randall D. Davy
Department of Chemistry, Liberty University, Lynchburg, Virginia 24502

Henry F. Schaefer III*
Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602

Received: August 7, 1996; In Final Form: December 4, 1996^{\otimes}

Abstract

Ab initio theoretical methods have been used to study small aluminum-phosphorus compounds. Geometries, relative energies, and harmonic vibrational frequencies of isomers of the formulas $\mathrm{AlPH}_{2}, \mathrm{AlPH}_{3}$, and AlPH_{4} and the $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ adduct have been determined at the self-consistent-field level (SCF), by the single- and double-excitation configuration interaction (CISD), and by the single- and double-excitation coupled cluster (CCSD) method. The lowest energy isomers for $\mathrm{AlPH}_{2}, \mathrm{AlPH}_{3}$, and AlPH_{4} are $\mathrm{Al}-\mathrm{PH}_{2}, \mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$, and $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$, respectively. The $\mathrm{HAl}-\mathrm{PH}$ isomer is planar and has a short $\mathrm{Al}-\mathrm{P}$ bond. An aluminum atom forms a weak complex with phosphine, and the barrier for insertion of Al into PH_{3} is estimated to be 12.0 $\mathrm{kcal} \mathrm{mol}^{-1}$. Various conformations of the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ molecule are investigated to give estimates of the energy of the π donor-acceptor bond. The energy of complexation for AlH_{3} and PH_{3} is obtained using triple- ζ-plus double-polarization function basis sets and the CCSD level. The theoretical energy of H_{2} loss is also obtained for $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ and $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$.

Introduction

Compounds of group III and group V elements in which the elements are four coordinate are well-known. Recently, advances have been made in the synthesis of $\mathrm{Al}-\mathrm{N}$ and $\mathrm{B}-\mathrm{P}$ compounds that contain three-coordinate or even two-coordinate atoms. ${ }^{1-9}$ Recent theoretical studies have also reexamined the model compound $\mathrm{HB}-\mathrm{PH}$ and its isomers. ${ }^{10,11}$ The Lewis acid-base adducts of the general formula $\mathrm{R}_{3} \mathrm{Al}-\mathrm{PR}^{\prime}{ }_{3}$ have of course been long known and were structurally characterized some time ago. ${ }^{12}$ To our knowledge, however, the only molecules with bonding between three-coordinate Al and P are $\left(2,4,6-(\mathrm{i}-\mathrm{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{AlP}\left(1\right.$-adamantyl) SiPH_{3}, which was reported by Wehmschulte, et al., ${ }^{13}$ and the six-membered ring $(\text { Mes*AlPPh })_{3}$ (Mes* $\left.=2,4,6-(\mathrm{t}-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$ reported by Wehmschulte and Power. ${ }^{3}$ These compounds allow for interesting studies of bonding because of the mixture of normal, dative (both σ dative and π dative) bonding and the possibility of multiple bonds. They are interesting from a practical standpoint, as pointed out by Cowley in his article "From Multiple Bonds to Materials Chemistry", ${ }^{14}$ because one would like to carry out chemical vapor deposition of group III-V materials from precursors that have a 1:1 ratio of group III to group V atoms and for which the strongest bond is the one between the group III and group V atoms. Cowley et al. have already synthesized the ($\left.\mathrm{RAl}-\mathrm{PR}^{\prime}\right)_{4}$ cube which decomposed at low temperature to form aluminum phosphide. ${ }^{15}$

Given the interest in this area, little theoretical work has been done on the bonding and energetics of the simplest model compounds that would include bonds between two- or threecoordinate Al and P. Three studies have examined the $\mathrm{H}_{3} \mathrm{Al}-$ PH_{3} adduct, ${ }^{16-18}$ and the model ring compound $(\mathrm{HAl}-\mathrm{PH})_{3}$ has been studied. ${ }^{19,20}$ In order to provide information on the fundamental properties of $\mathrm{Al}-\mathrm{P}$ bonds and the energetics of

[^0]different bonding situations, we have determined theoretically the geometries, energies, and vibrational spectra of the compounds of formula $\mathrm{Al}-\mathrm{PH}_{2}, \mathrm{Al}-\mathrm{PH}_{3}$, and $\mathrm{Al}-\mathrm{PH}_{4}$. These compounds could occur as intermediates in the formation of rings and clusters from the simple adducts or as decomposition products as the clusters fell apart to form an aluminum phosphide layer. The $\mathrm{Al}-\mathrm{PH}_{3}$ isomers could also occur as products of the reaction of aluminum atoms with phosphine. The energy, geometry, and vibrational spectrum of the previously studied $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ adduct were also obtained to allow a consistent theoretical framework for the comparison of bonding and reaction energies. Also, theoretical vibrational frequencies, although evaluated, ${ }^{17}$ have apparently not yet been published for this molecule. Our results will also be compared to published studies of analogous $\mathrm{B}-\mathrm{P}$ and $\mathrm{Al}-\mathrm{N}$ compounds. ${ }^{9,21}$

Theoretical Methods

$A b$ initio theoretical studies were carried out initially at the Hartree-Fock self-consistent-field (SCF) level. The restricted open-shell method was used for open-shell molecules, using a double- ζ-plus polarization (DZP) basis set. The HuzinagaDunning ($4 \mathrm{~s} / 2 \mathrm{~s}$) basis set was used for hydrogen, ${ }^{22,23}$ and the Huzinaga-Dunning (11s7p/6s4p) basis set was used for aluminum and phosphorus. ${ }^{24,25}$ The exponents for the polarization functions were $\mathrm{Al}=0.40, \mathrm{P}=0.80$, and $\mathrm{H}=0.75$. Electron correlation was included via the method of configuration interaction including all single and double excitations (CISD), and the coupled cluster method including all single and double excitations (CCSD). In all correlated methods, the orbitals corresponding to the Al and P 1 s atomic orbitals were frozen and the corresponding high-energy virtual orbitals deleted. A larger basis set was also used to assure that no anomalous results were obtained due to the small basis set size. Triple- ζ-plus double-polarization function (TZ2P) basis sets consisting of the Huzinaga-Dunning ${ }^{22,26}(5 \mathrm{~s} / 3 \mathrm{~s})$ basis set on hydrogen and the

Figure 1. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{HAl}-\mathrm{PH}$.

Figure 2. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{Al}-\mathrm{PH}_{2}$.

McLean-Chandler ($12 \mathrm{~s} 9 \mathrm{p} / 6 \mathrm{~s} 5 \mathrm{p}$) basis set on aluminum and phosphorous were used. ${ }^{24,27}$ The exponents of the polarization functions were $\mathrm{H}=(1.50,0.375), \mathrm{P}=(1.20,0.30)$, and $\mathrm{Al}=$ ($0.80,0.20$). Geometry optimizations were performed via analytic first-derivative methods. Open-shell molecules were not optimized at the CCSD level. Harmonic vibrational frequencies were obtained via analytic second derivatives for the SCF method and by finite differences of analytic first derivatives for the CISD and CCSD methods. The PSI suite of programs was used throughout. ${ }^{28}$

Results and Discussion

The optimized geometries of the AlPH_{2} isomers are given in Figures 1-3, and harmonic vibrational frequencies are given in Tables $1-3$. The optimized geometries of the $\mathrm{Al}-\mathrm{PH}_{3}$ structure are given in Figures 4-6, and the structure of the transition state for Al insertion into the $\mathrm{P}-\mathrm{H}$ bond is given in Figure 7. Tables 4-6 give the harmonic vibrational frequencies of the AlPH_{3} isomers. The structures for the AlPH_{4} isomers are given in Figures 8 and 9, and their harmonic vibrational frequencies are given in Tables 7 and 8 . The geometry of the $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ adduct is given in Figure 10, and its vibrational frequencies are given in Table 9. Tables 10-12 give the relative energies of the isomers of $\mathrm{AlPH}_{2}, \mathrm{AlPH}_{3}$, and AlPH_{4}, respec-

Figure 3. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$.

TABLE 1: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the HAIPH Isomer at Various Levels of Theory

assignment (intensity)	SCF		CISD	
	DZP	TZ2P	DZP	TZ2P
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H} \operatorname{str}$ (76)	2436	2378	2304	2282
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{H} \operatorname{str}$ (199)	2065	2054	2056	2020
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P} \operatorname{str}$ (21)	647	653	666	677
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{Al}-\mathrm{P}$ bend (31)	554	544	523	642
$\mathrm{a}^{\prime \prime} \mathrm{H}-\mathrm{Al}-\mathrm{P}-\mathrm{H}$ tors (17)	368	412	341	525
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P}-\mathrm{H}$ bend (71)	294	321	259	280

TABLE 2: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the AlPH_{2} Isomer at Various Levels of Theory

	SCF			CISD	
assignment (intensity)	DZP	TZ2P		DZP	TZ2P
$\mathrm{a}^{\prime \prime} \mathrm{P}-\mathrm{H}$ asym str (65)	2512	2464		2497	2402
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H}$ sym str (47)	2509	2463		2487	2395
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (15)	1198	1180		1145	1121
$\mathrm{a}^{\prime \prime} \mathrm{PH}$ 2 rock (77)	491	466		437	434
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P}$ str (41)	437	434		384	417
$\mathrm{a}^{\prime} \mathrm{PH}_{2}$ wag (64)	373	355		337	330
${ }^{a}$ Obtained at the DZP SCF level.					

TABLE 3: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the $\mathrm{H}_{2} \mathrm{AlP}$ Isomer at Various Levels of Theory

assignment (intensity)	SCF		CISD	
	DZP	TZ2P	DZP	TZ2P
$\mathrm{b}_{2} \mathrm{Al}-\mathrm{H}$ asym str (243)	2032	2005	2038	1989
$\mathrm{a}_{1} \mathrm{Al}-\mathrm{H}$ sym str (152)	2030	2004	2030	1984
$\mathrm{a}_{1} \mathrm{H}-\mathrm{Al}-\mathrm{H}$ bend (440)	857	838	846	814
$\mathrm{b}_{1} \mathrm{AlH}_{2}$ wag (324)	593	588	570	566
$\mathrm{a}_{1} \mathrm{Al}-\mathrm{P}$ (80)	457	447	446	426
$\mathrm{b}_{2} \mathrm{AlH}_{2}$ rock (8)	441	430	442	423

tively, at various levels of theory, Table 13 gives the energy of the $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ adduct vs separated AlH_{3} and PH_{3} fragments, and Table 14 gives the total energies of all isomers studied. We will analyze the structure, spectra, and potential energy surface for the $\mathrm{Al}-\mathrm{PH}_{2}, \mathrm{Al}-\mathrm{PH}_{3}$, and $\mathrm{Al}-\mathrm{PH}_{4}$ isomers separately and then analyze the energies of hydrogenation for $\mathrm{Al}-\mathrm{PH}_{2}$ and $\mathrm{Al}-\mathrm{PH}_{4}$.
$\mathbf{A l}-\mathbf{P H}_{\mathbf{2}}$. At all levels of theory, the $\mathrm{Al}-\mathrm{PH}_{2}$ isomer is the lowest in energy, with the $\mathrm{HAl}-\mathrm{PH}$ isomer lying $13 \mathrm{kcal} / \mathrm{mol}$ above $\mathrm{Al}-\mathrm{PH}_{2}$ at the TZ2P CCSD level including zero-point vibrational energy (ZPVE) corrections. The next highest state is the ${ }^{3} \mathrm{~A}_{2} \mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ isomer, which is $+22 \mathrm{kcal} / \mathrm{mol}$ from the lowest lying $\mathrm{Al}-\mathrm{PH}_{2}$ (TZ2P CISD +ZPVE). These results

Figure 4. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{Al}-\mathrm{PH}_{3}$.

Figure 5. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{HAl}-\mathrm{PH}_{2}$.

Figure 6. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$.
are in contrast to the BPH_{2} system, in which $\mathrm{HB}-\mathrm{PH}$ is the most stable isomer and $\mathrm{B}-\mathrm{PH}_{2}$ the least stable. ${ }^{9}$ Our AlPH_{2} results are analogous to those for the AlNH_{2} isomers, which have the same order of energy, i.e., $\mathrm{Al}-\mathrm{NH}_{2}<\mathrm{HAl}-\mathrm{NH}<$ $\mathrm{H}_{2} \mathrm{Al}-\mathrm{N} .{ }^{21}$ The nitrogen system, however, has a much larger

Figure 7. Theoretical geometries in angstroms and degrees at various levels of theory for the transition state for insertion of Al into the $\mathrm{P}-\mathrm{H}$ bond of PH_{3}.

TABLE 4: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the AlPH_{3} Isomer at Various Levels of Theory

	SCF			CISD	
assignment (intensity)	DZP	TZ2P		DZP	TZ2P
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H} \operatorname{str}(47)$	2565	2534		2556	2485
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H} \operatorname{str}(62)$	2564	2532		2553	2480
$\mathrm{a}^{\prime \prime} \mathrm{P}-\mathrm{H} \operatorname{str}(60)$	2564	2532		2545	2466
$\mathrm{a}^{\prime \prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (15)	1248	1234		1190	1200
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (17)	1247	1233		1181	1170
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (107)	1109	1096		1073	1033
$\mathrm{a}^{\prime} \mathrm{PH}$ wag (107)	119	119		135	173
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P}$ str (4)	57	43		67	69
$\mathrm{a}^{\prime \prime} \mathrm{PH}$ 3 wag (3)	23	35 i		80 i	108
${ }^{a}$ Obtained at the DZP SCF level.					

TABLE 5: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the HAIPH_{2} Isomer at Various Levels of Theory

	SCF			CISD	
assignment (intensity)	DZP	TZ2P		DZP	TZ2P
P-H asym str (65)	2643	2513		2581	2460
P-H sym str (21)	2626	2500		2558	2438
H-Al str (265)	2028	1950		1990	1921
H-P-H bend (26)	1245	1192		1174	1133
PH_{2} rock (60)	770	731		741	705
PH_{2} wag (6)	549	509		517	476
H-Al-P bend (97)	487	473		464	542
Al-P str (13)	423	473		464	405
H-Al-P-H tors (14)	270	245		277	236

${ }^{a}$ Obtained at the DZP SCF level.
spacing of energies for the isomers, with the $\mathrm{HAl}-\mathrm{NH}$ isomer lying $41 \mathrm{kcal} / \mathrm{mol}$ above $\mathrm{Al}-\mathrm{NH}_{2}$. $\mathrm{HAl}-\mathrm{PH}$ and $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ are low-lying because the electronegativities of Al and P differ by less than those of Al and N , and the $\mathrm{P}-\mathrm{H}$ and $\mathrm{Al}-\mathrm{H}$ bond energies are more nearly equal than the $\mathrm{Al}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond energies.

Although the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ isomer is higher in energy than $\mathrm{Al}-$ PH_{2}, it is still low-lying, especially compared to the $\mathrm{Al}-\mathrm{N}$

TABLE 6: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the H_{2} AlPH Isomer at Various Levels of Theory

assignment (intensity)	SCF		CISD	
	DZP	TZ2P	DZP	TZ2P
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H} \operatorname{str}$ (96)	2598	2483	2520	2420
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{H}$ asym str (234)	2090	2008	2062	1995
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{H}$ sym str (230)	2082	2004	2049	1988
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{Al}-\mathrm{H}$ bend (443)	862	842	840	821
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{Al}$ bend (24)	765	725	741	698
$\mathrm{a}^{\prime \prime} \mathrm{AlH}_{2}$ wag (320)	602	592	578	573
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P} \operatorname{str}(17)$	445	433	447	431
$\mathrm{a}^{\prime} \mathrm{AlH}_{2}$ rock (59)	440	427	430	412
$\mathrm{a}^{\prime \prime} \mathrm{H}-\mathrm{P}-\mathrm{Al}-\mathrm{H}$ tors (16)	104	103	85	60

Figure 8. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$.

Figure 9. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{HAl}-\mathrm{PH}_{3}$.
system, for which the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{N}$ isomer is $75 \mathrm{kcal} / \mathrm{mol}$ higher than the $\mathrm{Al}-\mathrm{NH}_{2}$ isomer at the DZP CISD level. Clearly an isomer that results in a monovalent nitrogen is much higher in energy than one with a monovalent phosphorus.

The $\mathrm{Al}-\mathrm{P}$ bond length in the $\mathrm{Al}-\mathrm{PH}_{2}$ isomer is $2.424 \AA$ (TZ2P CCSD), which is shorter by about $0.1 \AA$ than a typical alane-phosphine derivative donor-acceptor bond but longer than the normal (i.e., not dative) bond which is predicted by a modified Schomaker-Stevenson rule to be 2.31 Å. ${ }^{29}$ Even though the $\mathrm{Al}-\mathrm{P}$ bond is not dative, the strength of the bond is

TABLE 7: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the H_{2} AlPH2 Isomer at Various Levels of Theory

	SCF			CISD	
assignment (intensity)	DZP	TZ2P		DZP	TZ2P
a^{\prime} asym P-H str (60)	2552	2511		2544	2461
a^{\prime} sym P-H str (41)	2548	2509		2533	2452
$\mathrm{a}^{\prime \prime}$ asym Al-H str (234)	2034	2006		2048	1997
a^{\prime} sym Al-H str (152)	2032	2005		2039	1991
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (37)	1210	1192		1158	1135
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{Al}-\mathrm{H}$ bend (436)	851	835		841	815
$\mathrm{a}^{\prime \prime} \mathrm{PH}_{2}$ rock (9)	745	718		721	692
$\mathrm{a}^{\prime} \mathrm{AlH}$ 2 wag (203)	676	668		661	649
$\mathrm{a}^{\prime} \mathrm{PH} H_{2}$ wag (73)	493	471		469	447
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P}$ str (24)	440	432		438	432
$\mathrm{a}^{\prime \prime} \mathrm{AlH}$ 2 rock (60)	407	397	394	384	
$\mathrm{a}^{\prime \prime} \mathrm{H}-\mathrm{Al}-\mathrm{P}-\mathrm{H}$ tors (4)	220	205	223	198	
${ }^{a}$ Obtained at the DZP SCF level.					

TABLE 8: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the HAlPH_{3} Isomer at Various Levels of Theory

	SCF		
assignment (intensity)	DZP	TZ2P	DZP
$\mathrm{a}^{\prime \prime} \mathrm{P}-\mathrm{H} \operatorname{str}(49)$	2574	2547	2570
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H} \operatorname{str}(54)$	2574	2545	2566
$\mathrm{a}^{\prime} \mathrm{P}-\mathrm{H} \operatorname{str}(42)$	2573	2544	2557
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{H} \operatorname{str}(558)$	1765	1700	1766
$\mathrm{a}^{\prime \prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (13)	1248	1233	1190
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (13)	1244	1229	1184
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (107)	1103	1093	1071
$\mathrm{a}^{\prime} \mathrm{H}-\mathrm{Al}-\mathrm{P}$ bend (40)	484	540	545
$\mathrm{a}^{\prime \prime} \mathrm{PH}$ wag (1)	157	179	195
a $^{\prime} \mathrm{PH} H_{3}$ wag (6)	135	156	155
$\mathrm{a}^{\prime \prime} \mathrm{H}-\mathrm{Al}-\mathrm{P}-\mathrm{H}$ tors (0)	85	90	109
$\mathrm{a}^{\prime} \mathrm{Al}-\mathrm{P}$ (6)	71	67	80
${ }^{a}$ Obtained at the DZP SCF level.			

Figure 10. Theoretical geometries in angstroms and degrees at various levels of theory for $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$.
decreased by the absence of hydrogens on aluminum, which tend to withdraw electrons, increasing the attraction of the more electron-rich phosphorus. The $\mathrm{Al}-\mathrm{PH}_{2}$ isomer has a pyramidal phosphorus, as one would expect in analogy with $\mathrm{H}_{2} \mathrm{~B}-\mathrm{PH}_{2}$.

The HAl-PH isomer has the shortest $\mathrm{Al}-\mathrm{P}$ bond of any molecule examined in this work, only $2.149 \AA$ (TZ2P CCSD). A nondative π interaction apparently does occur and has an effect on the bond length. This is supported by the density plot of the HOMO for the HAl-PH molecule given in Figure 11. It shows substantial overlap of the out-of-plane p orbitals for Al and P . The Mulliken bond populations, although qualitative,

TABLE 9: Theoretical Harmonic Vibrational Frequencies (in cm^{-1}) and Intensities ${ }^{a}$ (in $\mathrm{km} \mathrm{mol}^{-1}$) for the $\mathbf{H}_{3} \mathrm{AlPH}_{3}$ Molecule at Various Levels of Theory

assignment (intensity)	SCF		$\frac{\text { CISD }}{\text { DZP }}$
	DZP	TZ2P	
e $\mathrm{P}-\mathrm{H} \operatorname{str}$ (46)	2619	2591	2600
$\mathrm{a}_{1} \mathrm{P}-\mathrm{H} \operatorname{str}$ (13)	2613	2584	2600
$\mathrm{a}_{1} \mathrm{Al}-\mathrm{H} \operatorname{str}$ (31)	1995	1955	2005
e $\mathrm{Al}-\mathrm{H} \operatorname{str}$ (538)	1972	1928	1995
e $\mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (34)	1234	1226	1185
$\mathrm{a}_{1} \mathrm{H}-\mathrm{P}-\mathrm{H}$ bend (29)	1097	1103	1077
e $\mathrm{H}-\mathrm{Al}-\mathrm{H}$ bend (481)	848	826	834
$\mathrm{a}_{1} \mathrm{H}-\mathrm{Al}-\mathrm{H}$ bend (893)	784	775	770
e $\mathrm{PH}_{3}, \mathrm{AlH}_{3}$ comb (10)	541	549	543
e $\mathrm{PH}_{3}, \mathrm{AlH}_{3}$ comb (5)	251	255	242
$\mathrm{a}_{1} \mathrm{Al}-\mathrm{P} \operatorname{str}(18)$	184	216	218
$\mathrm{a}_{2} \mathrm{H}-\mathrm{Al}-\mathrm{P}-\mathrm{H}$ tors (0)	115	122	131

TABLE 10: Relative Energy (in kcal mol ${ }^{-1}$) at Various Levels of Theory for $\mathbf{A l P H}_{2}$ Isomers

	SCF	CISD	CCSD
$\mathrm{Al}-\mathrm{PH}_{2}$			
DZP	0.0	0.0	0.0
TZ2P	0.0	0.0	0.0
HAl-PH	17.9	14.5	14.5
DZP	15.5	13.7	14.3
TZ2P			
H_{2} Al-P	9.2	21.2	26.3^{a}
DZP	8.7	21.7	26.7^{a}

${ }^{\text {a }}$ These are obtained from CCSD energies at the CISD-optimized geometries for the respective basis sets.

TABLE 11: Relative Energy (in kcal mol ${ }^{-1}$) at Various Levels of Theory for AlPH_{3} Isomers

	SCF	CISD	CCSD
$\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$			
DZP	0.0	0.0	0.0
TZ2P	0.0	0.0	0.0
$\mathrm{HAl-PH}$			
DZP	2.4	1.0	0.5^{a}
TZ2P	1.7	0.7	
$\mathrm{Al}-\mathrm{PH}_{3}$			
DZP	14.2	0.9	-3.0^{a}
TZ2P	20.6	19.1	17.6^{a}
Al, PH3 fragments	15.8	3.2	-0.6^{a}
DZP	21.8	21.8	19.7^{a}
TZ2P	46.8	37.9	
insertion transition state	43.8	33.6	
DZP			

${ }^{\text {a }}$ These are obtained from CCSD energies at the CISD-optimized geometries for the respective basis sets.

TABLE 12: Energy in ($\mathrm{kcal} \mathrm{mol}^{-1}$) of the $\mathbf{H A l}-\mathbf{P H}_{3}$ Isomer Relative to $\mathbf{H}_{2} \mathbf{A l}-\mathbf{P H}_{2}$ at Various Levels of Theory

	SCF	CISD	CCSD
DZP	29.6	30.0	27.5
TZ2P	31.0	31.3	29.2

show a distinct difference for the three isomers; the bond orders for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ and $\mathrm{Al}-\mathrm{PH}_{2}$ are 1.05 and 1.07 , respectively, while that for $\mathrm{HAl}-\mathrm{PH}$ is 1.95 . $\mathrm{HAl}-\mathrm{PH}$ forms a double bond at a much smaller energy cost than $\mathrm{HAl}-\mathrm{NH}$. Although the Mulliken bond orders are nearly the same, the $\mathrm{Al}-\mathrm{P}$ bond in the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ isomer is also significantly shorter than that of $\mathrm{Al}-$ PH_{2}. This can be rationalized based on the degree of charge separation. The atomic charges on Al and P for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ are +0.8 and -0.3 , respectively, whereas they are only +0.4 and

TABLE 13: Energy (in $\mathrm{kcal} \mathrm{mol}^{-1}$) of the $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ Relative to Separated Fragments at Various Levels of Theory

	SCF	CISD	CCSD
DZP	-10.2	-12.4	-12.5
TZ2P	-11.3	-13.7	-13.6

TABLE 14: Total Energies (in hartrees)

	SCF	CISD	CCSD
AlPH_{2}			
DZP	-583.767 064	-584.094 931	-584.128 152
TZ2P	-583.811708	-584.156 180	-584.196 053
HAl-PH			
DZP	-583.738 581	-584.071 779	-584.105 045
TZ2P	-583.787080	-584.134 387	-584.173 132
$\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$			
DZP	-583.752 477	-584.061 066	$-584.086195^{\text {a }}$
TZ2P	-583.797 783	-584.121 607	-584.153 $548^{\text {a }}$
$\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$			
DZP	-584.335 320	-584.648897	-584.676029^{a}
TZ2P	-584.387 115	-584.735 553	-584.772 961 ${ }^{\text {a }}$
$\mathrm{HAl}-\mathrm{PH}_{2}$			
DZP	-584.331 428	-584.647 290	-584.675279^{a}
TZ2P	-584.384 328	-584.734 477	
$\mathrm{Al}-\mathrm{PH}_{3}$			
DZP	-584.312 594	-584.647 399	$-584.680797{ }^{\text {a }}$
TZ2P	-584.354 347	-584.705 063	-584.744 853^{a}
$\mathrm{Al}, \mathrm{PH}_{3}$			
DZP	-584.310 070	-584.643648^{b}	-584.676 982
TZ2P	-584.352 373	-584.700756^{6}	-584.741538
Al-to- PH_{3} insertion transition state			
DZP	-584.226 785	-584.588553	
TZ2P	-584.317285	-584.682 046	
$\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$			
DZP	-584.946 772	-585.302 294	-585.337476
TZ2P	-584.992 144	-585.364 133	-585.406 781
$\mathrm{HAl}-\mathrm{PH}_{3}$			
DZP	-584.899 533	-585.254 416	-585.293 651
TZ2P	-584.942 710	-585.314180	$-585.360285^{\text {a }}$
$\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$			
DZP	-586.094 192	-586.479 110	-586.520 976
$\mathrm{H}_{3} \mathrm{Al}, \mathrm{PH}_{3} \quad 58.1078$			
DZP	-586.077 978	-586.459403^{b}	-586.501 073
TZ2P	-586.122 780	-586.519 056 ${ }^{\text {b }}$	-586.569 037

${ }^{a}$ These are CCSD energies at the CISD-optimized geometries for
the respective basis sets. ${ }^{b}$ These are energies of supermolecules that
consist of optimized fragment geometries fixed at $100 \AA$ from each
other.
-0.2 for Al and P in $\mathrm{Al}-\mathrm{PH}_{2}$. The order of the $\mathrm{Al}-\mathrm{P}$ bond strength is also reflected in the $\mathrm{Al}-\mathrm{P}$ stretching frequencies for these molecules. At the TZ2P CISD level, HA1-PH has an $\mathrm{Al}-\mathrm{P}$ stretching frequency of $677 \mathrm{~cm}^{-1}$ vs $426 \mathrm{~cm}^{-1}$ for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{P}$ and $417 \mathrm{~cm}^{-1}$ for $\mathrm{Al}-\mathrm{PH}_{2}$.

In all isomers, the aluminum center maintains planarity and the $\mathrm{H}-\mathrm{Al}-\mathrm{P}$ angles are either approximately 180° or 120°. In $\mathrm{Al}-\mathrm{PH}_{2}$, the $\mathrm{H}-\mathrm{P}-\mathrm{H}$ and $\mathrm{H}-\mathrm{P}-\mathrm{Al}$ bond angles are about 90°. In $\mathrm{HAl}-\mathrm{PH}$, the hydrogen on phosphorus bends significantly toward the Al , but even the shortest $\mathrm{Al}-\mathrm{H}$ distance at $2.290 \AA$ (TZ2P CCSD) remains too long for a $\mathrm{P}-\mathrm{H}$ bond.
$\mathbf{A l}-\mathbf{P H}_{3}$. The two isomers ${ }^{2} \mathrm{~A}^{\prime \prime} \mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$ and ${ }^{2} \mathrm{~A} \mathrm{HAl}-$ PH_{2} have almost the same energy. Our best estimate puts $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$ lower by $2.8 \mathrm{kcal} \mathrm{mol}^{-1}$, with roughly half of that difference due to ZPVE corrections. The relative energy of the ${ }^{2} \mathrm{~A}^{\prime} \mathrm{Al}-\mathrm{PH}_{3}$ adduct is sensitive to basis set. However, the TZ2P SCF and CISD results are consistent; for each, the $\mathrm{Al}-\mathrm{PH}_{3}$ adduct is $17 \mathrm{kcal} \mathrm{mol}^{-1}\left(17.2 \mathrm{kcal} \mathrm{mol}^{-1} \mathrm{TZ2P}\right.$ CISD + ZPVE) higher in energy than the $\mathrm{HAl}-\mathrm{PH}_{2}$ insertion product. The energy surface for the AlPH_{3} isomers is quite different from that of the $\mathrm{Al}-\mathrm{N}$ isomers. As was the case for the AlPH_{2}

Figure 11. Highest occupied molecular orbital for HAl-PH.
compounds, the differences in energy are smaller among the $\mathrm{Al}-\mathrm{P}$ compounds than they are for the analogous $\mathrm{Al}-\mathrm{N}$ compounds. Also, in contrast to the $\mathrm{Al}-\mathrm{N}$ system, the lowest energy isomer is $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$, whereas $\mathrm{H}_{2} \mathrm{Al}-\mathrm{NH}$ is the highest energy AlNH_{3} isomer investigated.

The optimized geometries of the various $\mathrm{Al}-\mathrm{PH}_{3}$ isomers are a particularly good source of information about $\mathrm{Al}-\mathrm{P}$ bonding. The $\mathrm{Al}-\mathrm{P}$ distance in the $\mathrm{Al}-\mathrm{PH}_{3}$ adduct is highly variable; including the correlation at the CISD level causes the distance to decrease by $0.54 \AA$ with the TZ2P basis set. Thus, our best estimate of the $\mathrm{Al}-\mathrm{P}$ bond length is $3.086 \AA$, significantly shorter than that reported by Sakai. ${ }^{30}$ Even this $\mathrm{Al}-\mathrm{P}$ distance remains $0.54 \AA$ beyond typical $\mathrm{Al}-\mathrm{P}$ donoracceptor bonds, which generally are around $2.55 \AA$. This observation raises the question of whether this interaction can truly be called a bond. The energy difference between the AlPH_{3} complex and the separated fragments is $2.7 \mathrm{kcal} \mathrm{mol}^{-1}$ at the TZ2P CISD level. This is quite consistent across the methods; the value is $2.3 \mathrm{kcal} \mathrm{mol}^{-1}$ at the DZP CISD level and $2.4 \mathrm{kcal} \mathrm{mol}^{-1}$ for DZP CCSD energies at the DZP CISD optimized geometry. The PH_{3} fragment geometry does change, but the change is small. The $\mathrm{P}-\mathrm{H}$ distance shortens by 0.002 \AA A compared to free phosphine. The change from free phosphine to the $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ adduct is about $-0.010 \AA$. The $\mathrm{H}-\mathrm{P}-\mathrm{H}$ bond angles in $\mathrm{Al}-\mathrm{PH}_{3}$ open (vs free phosphine) by 0.5° compared to a change of 5° for $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$. The charge on the Al atom is +0.04 according to the generalized atomic polar tensor (GAPT) method of Cioslowski. ${ }^{31}$ The aluminum has not received electrons from phosphorus but rather donated them to the phosphine hydrogens via the phosphorus. Because the phosphorus is more electronegative than the aluminum, there is little drive for donation of electrons from P to Al , especially when there are no substituents on the aluminum to take electrons and build up its positive charge. The $\mathrm{Al}-\mathrm{P}$ vibrational frequency is $69 \mathrm{~cm}^{-1}$ at the TZ2P CISD level of theory.

The $\mathrm{HAl}-\mathrm{PH}_{2}$ isomer is closely related to the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ molecule. If one of the hydrogen atoms in $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ is simply removed from aluminum, the resulting geometry is quite close to the optimized geometry for $\mathrm{HAl}-\mathrm{PH}_{2}$. The $\mathrm{Al}-\mathrm{P}$ bond of $\mathrm{HAl}-\mathrm{PH}_{2}$ is slightly longer than that of $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$, but its stretching frequency is higher; the minimum of the potential
well moves farther out, but the walls are steeper. The remaining $\mathrm{Al}-\mathrm{H}$ bond lengthens slightly and bends toward the phosphorus, and the $\mathrm{H}-\mathrm{Al}-\mathrm{P}-\mathrm{H}$ torsion angle increases by about 8.0°; i.e., the remaining hydrogen twists away from the phosphorus hydrogens.

The $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$ isomer is also closely related to the $\mathrm{H}_{2} \mathrm{Al}-$ PH_{2} molecule. The relationship is not readily apparent for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$, because it is planar, whereas $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ is not. It is also initially mysterious that loss of a hydrogen atom would induce planarity. This mystery is resolved when it is remembered that the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$ molecule has a ${ }^{2} \mathrm{~A}^{\prime \prime}$ ground state. The change in geometry from $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ is not a flattening of the phosphorus but rather rotation:

The planar $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$ isomer has nearly the same $\mathrm{Al}-\mathrm{P}$ bond length as the nonplanar $\mathrm{HAl}-\mathrm{PH}_{2}$ isomer. It is slightly shorter ($0.015 \AA$ TZ2P CISD), and the approximately 45° rotation of the $\mathrm{P}-\mathrm{H}$ bond into the AlH_{2} plane could be due to the π interaction between the unpaired electron on P and the empty Al p orbital, but it is difficult to determine whether the π interaction is cause or effect.

All of the $\mathrm{Al}-\mathrm{PH}_{3}$ isomers could conceivably be produced by the reaction of energetic Al atoms with phosphine. The reaction of Al with PH_{3} has also been studied theoretically by Sakai. ${ }^{30} \mathrm{He}$ found a structure for $\mathrm{Al}-\mathrm{PH}_{3}$ at the $\mathrm{SCF} / 6-31 \mathrm{G}^{* *}$ level that is very similar to our DZP SCF geometry, but he did not reoptimize the geometry at correlated levels. The reaction of Al with PH_{3} apparently covers a more complicated potential energy surface than the other Al atom insertion reactions studied by Sakai. He characterized the reaction to form $\mathrm{HAl}-\mathrm{PH}_{2}$ as hydrogen abstraction rather than aluminum insertion, and his plot of the $\mathrm{H}-\mathrm{Al}, \mathrm{H}-\mathrm{P}$, and $\mathrm{Al}-\mathrm{P}$ bond lengths along the reaction path shows the shortest $\mathrm{Al}-\mathrm{P}$ distance of about $2.8 \AA$, corresponding to the transition state. However, Sakai's plot of the reaction path shows the $\mathrm{Al}-\mathrm{P}$ distance lengthening after the transition state to a geometry that does not correspond to the $\mathrm{HAl}-\mathrm{PH}_{2}$ molecule. Analysis of the imaginary frequency mode obtained for our transition state shows that the reaction coordinate involves $\mathrm{Al}-\mathrm{P}$ shortening as the H atom swings away from P to Al.

Our results for the energy of the transition state for insertion are in agreement with the lower level results of Sakai but only when the TZ2P basis set is used at the CISD level. Including ZPVE at the TZ2P CISD level, we find the transition state lies $12.7 \mathrm{kcal} \mathrm{mol}^{-1}$ above the $\mathrm{Al}-\mathrm{PH}_{3}$ adduct in energy, and the adduct lies $19.8 \mathrm{kcal} \mathrm{mol}^{-1}$ above the $\mathrm{HAl}-\mathrm{PH}_{2}$ insertion product. Sakai obtains energy differences of 12.1 and 17.4 kcal mol^{-1}, respectively. It is worth noting that neither geometries nor energetics are trustworthy for the weakly bound complex using basis sets below TZ2P quality.

In a matrix IR study of Al reactions with SiH_{4}, Lefcourt and Ozin found that photoactivated Al atoms did insert into bonds, and their results are consistent with a concerted mechanism. ${ }^{32}$ They assigned an absorption at $1784 \mathrm{~cm}^{-1}$ to the $\mathrm{Al}-\mathrm{H}$ stretching fundamental. Our highest level results for $\mathrm{HAl}-$ PH_{2} give an $\mathrm{Al}-\mathrm{H}$ stretch of $1921 \mathrm{~cm}^{-1}$ at the TZ2P CISD level; reduction ${ }^{33}$ of this theoretical harmonic vibrational frequency by 7% yields $1787 \mathrm{~cm}^{-1}$.

AlPH 4 . The $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ isomer is the lowest in energy at all levels of theory. The difference in energy between it and the $\mathrm{HAl}-\mathrm{PH}_{3}$ isomer is quite consistent across different levels of theory at about $30 \mathrm{kcal} \mathrm{mol}^{-1}$. This is quite similar to the
results found for the analogous $\mathrm{Al}-\mathrm{N}$ compounds, ${ }^{21}$ for which $\mathrm{H}_{2} \mathrm{Al}-\mathrm{NH}_{2}$ lies $32 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy than $\mathrm{HAl}-\mathrm{NH}_{3}$.

The geometry of the $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ molecule fits simple predictions of the geometry of compounds with normal $\mathrm{Al}-\mathrm{P}$ bonds. The Al-P bond length is $2.335 \AA$ at the TZ2P CCSD level and is quite consistent across theoretical methods, and this matches quite well with the prediction, mentioned above, that a nondative $\mathrm{Al}-\mathrm{P}$ bond between three-coordinate Al and P should have a bond length of $2.31 \AA$. There is a slight shortening of $\mathrm{Al}-\mathrm{H}$ bonds and a slight lengthening of $\mathrm{P}-\mathrm{H}$ bonds going from $\mathrm{H}_{3} \mathrm{Al}-$ PH_{3} to $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$, as the $\mathrm{H}-\mathrm{P}-\mathrm{H}$ angle closes down from about 99° to 96° and the $\mathrm{H}-\mathrm{Al}-\mathrm{H}$ angle opens from about 118° to 121°.

The $\mathrm{HAl}-\mathrm{PH}_{3}$ molecule has a long, weak donor-acceptor bond. As in the case of $\mathrm{Al}-\mathrm{PH}_{3}$, the $\mathrm{Al}-\mathrm{P}$ bond shortens substantially at correlated levels. At all levels of theory, HAlPH_{3} has an $\mathrm{Al}-\mathrm{P}$ bond distance roughly $0.25 \AA$ shorter than that of $\mathrm{Al}-\mathrm{PH}_{3}$. This emphasizes the strong dependence of the donor-acceptor bond strength on the presence of substituents on Al that can withdraw electrons. The $\mathrm{HAl}-\mathrm{PH}_{3}$ geometry is remarkable for being the only molecule studied in which an $\mathrm{H}-\mathrm{Al}-\mathrm{P}$ angle is not within 5° of 120° or 180°. The $\mathrm{H}-\mathrm{Al}$ bond is also at least $0.05 \AA$ longer than that of any other compound reported here, and the harmonic stretching frequencies are correspondingly low.

Schade and Schleyer have compared the relative energies of the optimized $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ structure, which has a pyramidal phosphorus center, with a planar structure and a structure for which the $\mathrm{H}_{2} \mathrm{Al}$ group has been rotated so that it bisects the $\mathrm{H}_{2} \mathrm{P}$ plane. ${ }^{34}$ They reported energies but not optimized geometries. The geometries are of interest because they will reflect the $\mathrm{Al}-\mathrm{P}$ interaction when the molecule is forced to be planar. The analogous $\mathrm{H}_{2} \mathrm{AlNH}_{2}$ molecule is planar and has a shorter bond than expected by the Schomaker-Stevenson rule. ${ }^{29}$ If $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ is constrained to be planar and the geometry reoptimized, the $\mathrm{Al}-\mathrm{P}$ bond shortens by about $0.1 \AA$ (from 2.308 to $2.205 \AA$ A DP CISD). The shortening can be attributed to two factors. The first is rehybridization of the σ-bonding orbitals on phosphorus from mostly p atomic orbital character (evidenced by the approximately 94° bond angles) to orbitals that contain more s character, accompanied by an increase in the $\mathrm{H}-\mathrm{P}-\mathrm{H}$ bond angle to about 108°. The second factor in the $\mathrm{Al}-\mathrm{P}$ bond distance reduction is $\mathrm{P}-\mathrm{to}-\mathrm{Al} \pi$ donation. If the phosphorus center is maintained planar but the $\mathrm{H}_{2} \mathrm{Al}$ group is rotated by 90° about the $\mathrm{Al}-\mathrm{P}$ bond, the $\mathrm{Al}-\mathrm{P}$ bond lengthens by $0.06 \AA$ to $2.265 \AA$; thus, 60% of the original shortening of the bond is lost upon rotation. This lengthening might be due to factors besides the loss of the π donation. If the $\mathrm{H}_{2} \mathrm{Al}$ group is kept rotated 90° but the PH_{2} group is allowed to relax back to a pyramidal geometry, the $\mathrm{Al}-\mathrm{P}$ bond lengthens even further to $2.340 \AA$ (DZP CISD), which is $0.022 \AA$ longer than the $\mathrm{Al}-\mathrm{P}$ distance in the fully optimized geometry. There are multiple factors affecting the $\mathrm{Al}-\mathrm{P}$ distance as the out-of-plane and torsional angles are changed, but the above analysis suggests that the $\mathrm{Al}-\mathrm{P} \pi$ interaction, although not strong enough to overcome the barrier to planarity for the phosphorus center, does affect the $\mathrm{Al}-\mathrm{P}$ distance if a planar geometry is enforced.

We find the energy required to force $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ planar to be about $10 \mathrm{kcal} \mathrm{mol}^{-1}$, in good agreement with the results of Schade and Schleyer. ${ }^{34}$ This compares to a value of 37 kcal mol^{-1} for the barrier to inversion for $\mathrm{PH}_{3}{ }^{35}$ and a barrier of about $6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for $\mathrm{H}_{2} \mathrm{BPH}_{2} \cdot{ }^{36}$ The energy for rotation by 90° about the $\mathrm{Al}-\mathrm{P}$ bond of the planar geometry is 15.5 kcal mol^{-1} (DZP CISD), somewhat larger than Schade and Schleyer's value of $11.4 \mathrm{kcal} \mathrm{mol}^{-1}$. When the planar PH_{2} group in
the twisted geometry is allowed to pyramidalize, the resulting twisted pyramidal molecule is only $3.4 \mathrm{kcal} \mathrm{mol}^{-1}$ (DZP CISD) above the totally optimized geometry. Thus, for the simplest estimate of the $\mathrm{Al}-\mathrm{P} \pi$-bond energy, which is obtained from the energy required for rotation about the $\mathrm{Al}-\mathrm{P}$ bond of the molecule that has been forced planar, we find theoretically 15.5 $\mathrm{kcal} \mathrm{mol}^{-1}$. Another estimate can be obtained from the difference between the barrier to pyramidalization at phosphorus in the twisted and nontwisted structures as shown below:

We obtain a value of $12.2 \mathrm{kcal} \mathrm{mol}^{-1}$ for this difference, again somewhat larger value than the value of $8.5 \mathrm{kcal} \mathrm{mol}^{-1}$ obtained by Schade and Schleyer.
$\mathbf{H}_{\mathbf{3}} \mathbf{A l}-\mathbf{P H}_{\mathbf{3}}$. Authors of earlier studies of the $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ adduct have reported theoretical geometries and dissociation energies. Chaillet et al., ${ }^{16}$ who used the MP2 method with core pseudopotentials and DZP valence basis sets, obtained an $\mathrm{Al}-\mathrm{P}$ distance of $2.566 \AA$. Jungwirth and Zahradnik ${ }^{17}$ optimized geometries using $631 \mathrm{G}^{*}$ basis sets at the MP2 level and found an $\mathrm{Al}-\mathrm{P}$ distance of $2.544 \AA$. If one compares these results with the present work, one sees that the $\mathrm{Al}-\mathrm{P}$ distance is stable over a range of theoretical methods, with our best estimate being 2.576 based on the TZ2P CCSD results. All other geometrical parameters are similar, with our highest level results giving shorter $\mathrm{Al}-\mathrm{H}$ and $\mathrm{P}-\mathrm{H}$ bond lengths, due most likely to the lack of polarization functions on H in the other studies. Our theoretical $\mathrm{Al}-\mathrm{P}$ bond stretching mode is also lower than that reported by Jungwirth and Zahradnik. Although the larger TZ2P basis set gives a shorter $\mathrm{Al}-\mathrm{P}$ bond than the DZP basis set, it flattens the potential well so that the $\mathrm{Al}-\mathrm{P}$ stretching frequency decreases. Electron correlation has little effect on either the $\mathrm{Al}-\mathrm{P}$ bond length or stretching frequency. The electron diffraction study of Almenningen et al. ${ }^{18}$ found an $\mathrm{Al}-\mathrm{P}$ distance of $2.53 \AA$ for $\mathrm{Me}_{3} \mathrm{Al}-\mathrm{PMe}_{3}$.

The dissociation energy of $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ (without ZPVE or basis set superposition corrections) found by Bennet et al. was 13.2 $\mathrm{kcal} \mathrm{mol}^{-1}$. Jungwirth and Zahradnik obtained $15.2 \mathrm{kcal} \mathrm{mol}^{-1}$, while Chaillet et al. found $14.6 \mathrm{kcal} \mathrm{mol}^{-1}$. The dissociation energy was evaluated at different theoretical levels to assess convergence. At the CISD level, the energy of a fragment supermolecule is subtracted from the adduct to assure size consistency. As the basis set is increased and correlation is included at higher levels, the value converges quite well. Our best estimate is from the TZ2P CCSD level and is 13.6 kcal mol^{-1}. If ZPVE energy is included, the value for D_{0} is 11.0 kcal mol ${ }^{-1}$.

The changes in fragment geometry upon complexation are consistent across theoretical levels. Upon complexation, the $\mathrm{P}-\mathrm{H}$ bond shortens by about $0.012 \AA$, and the $\mathrm{Al}-\mathrm{H}$ bond lengthens by about $0.012 \AA$. The $\mathrm{H}-\mathrm{Al}-\mathrm{H}$ angles close by about 1.5°, as the hydrogens bend back away from the phosphorus, and the $\mathrm{H}-\mathrm{P}-\mathrm{H}$ angle opens by 5°, as the hydrogens on phosphorus bend toward the aluminum. Experimentally, for $\mathrm{Me}_{3} \mathrm{Al}-\mathrm{PMe}_{3}$, the $\mathrm{Al}-\mathrm{C}$ bonds lengthen by 0.016 \AA, and the $\mathrm{P}-\mathrm{C}$ bonds shorten by $0.024 \AA$. The $\mathrm{C}-\mathrm{Al}-\mathrm{C}$ angle closes by 2.9°, and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle opens by 4.8°. The
similar values for the change in angles suggests that the changes are due to rehybridization due to electron donation rather than simple valence shell electron pair repulsion (VSEPR) considerations, which should affect the much larger methyl groups differently than the hydrogens.

Energies of Dehydrogenation. Formation of rings or clusters from Lewis acid-base adducts generally proceeds through alkane elimination. For our model compounds, it would be loss of hydrogen. We can evaluate the energy of dehydrogenation for both $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$ and $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$. The energy required for dehydrogenation of $\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3}$

$$
\mathrm{H}_{3} \mathrm{Al}-\mathrm{PH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}+\mathrm{H}_{2}
$$

is quite consistent across various levels of theory at about 10 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$, with our best estimate being $8.3 \mathrm{kcal} \mathrm{mol}^{-1}$ at the TZ2P CCSD level. This result is reduced to only 3.3 including ZPVE corrections. Hydrogen loss from the analogous $\mathrm{H}_{3} \mathrm{Al}-$ NH_{3} was found theoretically to require about $4 \mathrm{kcal} \mathrm{mol}^{-1} ;{ }^{21}$ for the related $\mathrm{H}_{3} \mathrm{~B}-\mathrm{NH}_{3}$, hydrogen loss results in a decrease in energy, the value of which is estimated to be about -6 to $-8 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{37,38}$ These reactions show a consistent trend: as Al and P are replaced by lighter atoms, H_{2} loss is more favorable.

Dehydrogenation of $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ and its analogues $\mathrm{H}_{2} \mathrm{Al}-\mathrm{NH}_{2}$ and $\mathrm{H}_{2} \mathrm{~B}-\mathrm{NH}_{2}$ is harder to compare because the lowest energy isomers upon hydrogen loss are $\mathrm{Al}-\mathrm{PH}_{2}, \mathrm{Al}-\mathrm{NH}_{2}$, and $\mathrm{HB}-$ NH. We are interested in comparing the energy required to lose hydrogen and form the $\mathrm{HX}-\mathrm{YH}$ isomer, because this isomer in each case has a nondative π bond. The energy required for the reaction

$$
\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2} \rightarrow \mathrm{HAl}-\mathrm{PH}+\mathrm{H}_{2}
$$

is about $39.4 \mathrm{kcal} \mathrm{mol}^{-1}$ at the TZ2P CCSD level. This can be compared to $62 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{NH}_{2}{ }^{21}$ and $30 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\mathrm{H}_{2} \mathrm{~B}-\mathrm{NH}_{2} .{ }^{37}$ The energy required to form these monomeric compounds with two-coordinate Al and P is not much higher than that required for the formation of $\mathrm{B}-\mathrm{N}$ analogues, which are known. However, in the $\mathrm{B}-\mathrm{N}$ case, this isomer has the lowest energy, whereas for $\mathrm{Al}-\mathrm{P}$ the $\mathrm{Al}-\mathrm{PH}_{2}$ isomer is lowest, which adds the possibility of rearrangement to the already thermodynamically unstable situation. It is seen, based on a comparison of the $\mathrm{Al}-\mathrm{P}$ results with $\mathrm{Al}-\mathrm{N}$, that the π bond between $\mathrm{Al}-\mathrm{P}$ lowers the energy of $\mathrm{HAl}-\mathrm{PH}$ substantially. The loss of H_{2} from the Al atom in $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}_{2}$ requires about 25 kcal mol^{-1} at the TZ2P CCSD level, which is close to the value obtained for the analogous reaction for $\mathrm{H}_{2} \mathrm{Al}-\mathrm{NH}_{2}, 21 \mathrm{kcal}$ mol^{-1}. ${ }^{21}$

Concluding Remarks. The aluminum-phosphorus compounds considered here have a greater wealth of low-lying isomers than the analogous $\mathrm{Al}-\mathrm{N}$ compounds. All three isomers of the formula AlPH_{2} are within about $20 \mathrm{kcal} \mathrm{mol}^{-1}$ of one another, and particularly noteworthy is that the planar $\mathrm{H}_{2} \mathrm{Al}-\mathrm{PH}$ isomer is the lowest in energy of all AlPH_{3} compounds. The reaction of aluminum atoms with phosphine, provided the aluminum atoms are activated, should produce a wealth of interesting products. The $\mathrm{Al}-\mathrm{P}$ bond distance is very consistently in the range of $2.33-2.35 \AA$ for those compounds that contain two- or one-coordinate phosphorus and aluminum.

These bonds all have stretching frequencies of $430-450 \mathrm{~cm}^{-1}$. The $\mathrm{Al}-\mathrm{P} \pi$ donor-acceptor bond is estimated to be worth about $12 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ based on barriers to inversion for $\mathrm{H}_{2} \mathrm{Al}-$ PH_{2}. The nondative π bond in HAl-PH does shorten the $\mathrm{Al}-\mathrm{P}$ bond to $2.149 \AA$, substantially shorter than a typical nondative bond between $\mathrm{Al}-\mathrm{P}$.

Acknowledgment. We gratefully acknowledge the National Science Foundation Grant CHE-9527468 for the support of this work.

References and Notes

(1) Paine, R. T.; Noth, H. Chem. Rev. 1995, 95, 343.
(2) Schulz, S.; Hämig, L.; Herbst-Immer, R.; Roesky, H. W.; Sheldrick, G. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 969.
(3) Wehmshulte, R. J.; Power, P. P. J. Am. Chem. Soc. 1996, 118, 791.
(4) Arif, A. M.; Boggs, J. E.; Cowley, A. H.; Lee, J.-G.; Pakulski, M.; Power, J. M. J. Am. Chem. Soc. 1986, 108, 6093.
(5) Cowley, A. H. Phosphorus, Sulfur 1987, 30, 129.
(6) Waggoner, K. M.; Hope, H.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1988, 27, 1699.
(7) Dias, H. V. R.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 1270.
(8) Pestana, D. C.; Power, P. P. J. Am. Chem. Soc. 1991, 113, 8426.
(9) Power, P. P. Angew. Chem., Int. Ed. Engl. 1990, 29, 449.
(10) Watts, J. D.; Van Zant, L. C. Chem. Phys. Lett. 1996, 251, 119.
(11) Kerins, M. C.; Fitzpatrick, N. J.; Nguyen, M. T. Polyhedron 1989, 8, 969.
(12) Almenningen, A.; Fernhalt, L.; Haaland, A.; Weidlen, J. J. Organomet. Chem. 1978, 145, 109.
(13) Wehmschulte, R. J.; Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. 1994, 33, 3205.
(14) Cowley, A. H. J. Organomet. Chem. 1990, 400, 71.
(15) Cowley, A. H.; Jones, R. A.; Mardones, M. A.; Atwood, J. L.; Bott, S. G. Angew. Chem., Int. Ed. Engl. 1990, 29, 1409.
(16) Chaellet, M.; Dargelos, A.; Marsden, C. J. New. J. Chem. 1994, 18, 693.
(17) Jungwirth, P.; Zahradnik, R. THEOCHEM 1993, 283, 317.
(18) Bennett, F. R.; Elms, F. M.; Gardiner, M. G.; Koutsantonis, G. A.; Raston, L.; Roberts, N. K. Organometallics 1992, 11, 1457.
(19) Matsunaga, N.; Cundari, T. R.; Schmidt, M. W.; Gordon, M. S. Theor. Chim. Acta 1992, 83, 57.
(20) Matsunaga, N.; Gordon, M. S. J. Am. Chem. Soc. 1994, 116, 11408.
(21) Davy, R. D.; Jaffrey, K. L. J. Phys. Chem. 1994, 98, 8930.
(22) Huzinaga, S. J. Chem. Phys. 1965, 45, 1293.
(23) Dunning, T. H., Jr. J. Chem. Phys. 1970, 53, 2823.
(24) Huzinaga, S. Approximate Atomic Functions II. Deparment of Chemistry Report, University of Alberta, Edmonton, Alberta, Canada, 1971.
(25) Dunning, T. H., Jr.; Hay, P. J. In Methods of Electronic Structure Theory; Schaefer, H. F., Ed.; Plenum: New York, 1977.
(26) Dunning, T. H., Jr. J. Chem. Phys. 1971, 55, 716.
(27) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
(28) Janssen, C. L.; Seidl, E. T.; Scuseria, G. E.; Hamilton, T. P.; Yamaguchi, Y.; Remington, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Fermann, J. T.; Allen, W. D.; Brooks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M.; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F. PSI 2.0.8; PSITECH, Inc.: Watkinsville, GA, 30677, 1994.
(29) Haaland, A. In Coordination Chemistry of Aluminum; Robinson, G. H., Ed.; VCH: New York, 1994; pp 1-56.
(30) Sakai, S. J. Phys. Chem. 1992, 96, 8369.
(31) Cioslowski, J. J. Am. Chem. Soc. 1989, 111, 8333.
(32) Lefcourt, M. A.; Ozin, G. A. J. Phys. Chem. 1991, 95, 2623.
(33) Schaefer, H. F.; Thomas, J. R.; Yamaguchi, Y.; DeLeeuw, B. J.; Vacek, G. In Modern Electronic Structure Theory, Part I; Yarkony, D. R., Ed.; World Scientific: Englewood Cliffs, NJ, 1995; pp 3-54.
(34) Schade, C.; Schleyer, P. v. R. J. Chem. Soc., Chem Commun. 1987, 1399.
(35) Lehn, J. M.; Munsch, B. Mol. Phys. 1972, 23, 91.
(36) Allen, T. L.; Scheiner, A. C.; Schaefer, H. F. Inorg. Chem. 1990, 29, 1930.
(37) McKee, M. L. J. Phys. Chem. 1992, 96, 5380.
(38) Sana, M.; Leroy, G. Wilamte, C. Organomettalics 1992, 11, 787.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, April 1, 1997.

